
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

IOC ‘makeBaseApp’

Kay Kasemir

Jan. 2019

22 2

EPICS IOC

Channel Access, pvAccess

LAN

Sequencer

Device Support

I/O Hardware

IOC

Database

• Database
– Known & well tested

records
– Remote access
– Access security
– ‘bumpless’ reboot

• Sequencer
– Others might not understand

your C code

• Device Support
– Include existing device support?

Easy enough
– Have to write new device (driver) code?

Varying degrees of difficulty

33

Pre-built IOC with
Database engine,
Channel Access,
opt. PVA.

Run as many
instances as
needed.

Need autosave, sequencer, device support?
à Create your own IOC application binary!

3

softIoc, softIocPVA

Channel Access, PVAccess

LAN

IOC

Database

44

‘Host’ vs. ‘Target’ IOCs
• Host-based

– Runs on same type of host (Linux, Mac, Windows) on which it’s compiled
– IOC is just another program on the host
– May run many IOCs on the same host
– Examples: `softIoc`, `softIocPVA`

• Target IOC
– Cross-compiled from e.g. Linux to VxWorks
– Runs on VxWorks, RTEMS, RTLinux
– IOC is the primary, maybe only program running on the target

A lot of EPICS code can be used on both
– Records
– Device support for networked I/O

55

How many custom IOC binaries?

Accelerator
– Vacuum: Autosave, Support for AllenBradley PLC
– LLRF: Autosave, Support for LLRF hardware

Beamlines
– Cameras: Autosave, AreaDetector
– Various sample environments:

Autosave, Motor Record, Stream Device

66

‘makeBaseApp.pl’

Creates skeleton for custom IOC
– Directory structure
– Makefiles
– Examples: *.db, *.st, driver/device/record *.c
– IOC startup file

Two extremes
– makeBaseApp.pl –t example

• Get most everything; you delete what’s not needed
– makeBaseApp.pl –t ioc

• Just dirs & Makefiles; you add what’s needed

77

EPICS Build Facility

Is outstanding
• make, perl
• Builds on Linux, Mac,

Windows,
for Linux, FreeBSD, OS
X, Windows, vxWorks,
RTEMS, x86, x86_64,
ppc, arm, …

• AppDevGuide
• Functioned for

decades across
many changes of
OSs, compilers, …

Is aggravating

• Why is it not an Eclipse,
Visual C++, KDeveloper
… project?
What about CMake,
GNU automake, … ?

• What’s the name of that
option again?

• What’s causing this error
now?

88

‘demo’ based on ‘example’ template
Go somewhere
mkdir –p ~/epics-train/mine
cd ~/epics-train/mine

Create IOC application of type ‘example’,
using ‘demo’ in the generated names
makeBaseApp.pl -t example demo

Create IOC startup settings of type ‘example’,
call it ‘demo’ because it’s for the app of that name
makeBaseApp.pl -t example -i demo
When prompted, use the previously created ‘demo’
application as the one that the IOC should load

Compile everything
make

Start IOC
cd iocBoot/iocdemo
chmod +x st.cmd
./st.cmd

99

Directory Layout: Key Files

To study the skeleton, check files before the first
‘make’ or after a ‘make distclean’

makeBaseApp.pl -t example demo
configure/RELEASE
configure/CONFIG_SITE
demoApp/Db/*.db
demoApp/Db/*.substitutions
demoApp/Db/Makefile
demoApp/src/Makefile

makeBaseApp.pl -t example -i demo
iocBoot/iocdemo/Makefile
iocBoot/iocdemo/st.cmd

1010

configure/RELEASE

• Defines the path to EPICS base and other modules
BASE=/home/training/epics-train/tools/base-7.0.1.1
SNCSEQ = /home/training/epics-train/tools/seq-2.2.6
AUTOSAVE = /home/training/epics-train/tools/autosave-R5-9

• Since about 3.15, includes ../RELEASE.local
basedir/RELEASE.local: Lists all the modules
basedir/top1/configure/RELEASE – includes ../../RELEASE.local
basedir/top1/abcApp/ - uses EPICS base etc.
basedir/top1/iocBoot/ - IOC bootups
basedir/top2/configure/RELEASE – includes ../../RELEASE.local
basedir/top2/xyzApp/ - uses EPICS base etc.
basedir/top2/iocBoot/ - IOC bootups

1111

demoApp

• xyzApp/Db Database files
• xyzApp/src *Main.cpp,

Sequences,
custom device support,
Makefile that lists required *.dbd and libs

1212

HowTo: Add Database files

1. Create xyzApp/Db/another.db
For simple database, can test via
softIoc –d another.db

2. Add to xyzApp/Db/Makefile:
DB += another.db

3. make
Now it’s under db/another.db

4. Add to iocBoot/iocwhatever/st.cmd
dbLoadRecords "db/another.db", "macro=value”

5. (Re-)start the IOC

1313

Directory Layout: Generated Files

Beware of difference:

•xyzApp/Db/*
– Database ‘Sources’. Edit these!

•db/*
– ‘Installed’ databases, may have macros replaced.

Will be overwritten by next ‘make’!

**/O.Common
**/O.linux-x86_64
**/O.*
db/*
dbd/*
include/*
lib/*
bin/*

1414

*.dbd: Database Descriptions
IOC record types, device support, … are extensible

– Implement new record type, new device support:
Write C/C++ code for certain interfaces, compile.

– Somehow ‘register’ this with core IOC code:
*.dbd file

Internals:
VxWorks RTOS, the original IOC target, had runtime
loader and symbol table.
RTEMS, .. don’t necessarily offer this.
EPICS build facility generates IOC startup source code
from *.dbd file.

1515

HowTo: Add Support Modules (Device, …)
Example: ‘Autosave’

1.Define path in configure/RELEASE resp. ../../RELEASE.local
AUTOSAVE=/home/training/epics-train/tools/autosave-R5-9

Path to the support directory is usually pulled into a macro, since you often include
more than one support module:

TOOLS =/home/training/epics-train/tools
AUTOSAVE=$(TOOLS)/autosave-R5-9

2.Add binary and DBD info to xyzApp/Db/Makefile:

YourProduct_DBD += asSupport.dbd
YourProduct_LIBS += autosave

3.Use the support module in the IOC startup file:
cd ${AUTOSAVE}
dbLoadRecords "db/save_restoreStatus.db", "P=demo”
set_requestfile_path("/home/controls/var")
create_monitor_set(...)

Details on how to use a support module depend on the specific one, including
names of provided *.dbd, binary, *.db, IOC commands

1616

Summary

makeBaseApp.pl creates the IOC skeleton

Good practice:
– Use makeBaseApp.pl –t example… for copy/paste.
– Create empty operational setup,

and only paste-in what you need.
– Do it in small steps.

Much more:
EPICS Application Developer’s Guide

